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Abstract

In a distributed memory multicomputer that has no global clock, global processor synchron-

ization can only be achieved through software. Global synchronization algorithms are used in tri-
diagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms.

They are also useful for event simulation, debugging, and for solving mutual exclusion problems.
For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effec-
tive use of the communication network for operations such as the shift, where each processor in a
one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three

global synchronization algorithms are considered for the iPSC/860: the 9sync ( ) primitive pro-
vided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization

(RDS) algorithm. The performance of these algorithms is compared to the performance predicted
by communication models of both the long and forced message protocols. Measurements of the
cost of shift operations preceded by global synchronization show that the RDS algorithm always

synchronizes the nodes more precisely and costs only slightiy more than the other two algo-
rithms.
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1. Introduction

Any node of the Intel iPSC/860 can concurrently send one message and receive one mes-

sage. For example, when a pair of nodes needs to exchange messages with each other, it is desk-
able that they exchange those messages concurrently because of the cost savings that concurrency

yields. In general, this operation is called an exchange and, ff the nodes are neighbors, this opera-
tion is called a simple exchange. Previous work [13] has shown that synchronizing a pair of
nodes before an exchange ensures concurrency when the long message protocol is used, and thus

reduces communication costs for that operation. (The long message protocol is described further
in Section 2.) The cost of synchronization is outweighed by the savings due to concurrency if the

messages exchanged are each a few hundred bytes long. This approach has also been used to
reduce the cost of certain global communication operations, such as the one-to-all broadcast, the

all-to-all broadcast, and the complete exchange, since the best known algorithms for those opera-
tions are all based on sequences of exchanges [13].

Many applications, including sequence comparison algorithms, computational fluid dynam-

ics codes, and bin sorting algorithms, configure the processors of the hypercube to form a ring, a
one-dimensional array, or a square grid. In these applications each processor performs a compu-

tation and then sends a message to its right (or left) neighbor in the ring, array, or row (or
column) of the grid. This communication operation is called a shift. For example, when a hyper-
cube of n nodes is mapped to a square grid each row of .¢rff nodes will shift a message among the

members of that row. When a hypercube is mapped to a ring or one-dimensional array, all n
nodes participate in the shift.

Pairwise synchronization is necessary to guarantee concurrency during an exchange of mes-
sages using the long message protocol. The same is true for the shift operation, but in this case
all nodes of the (sub)cube participating in the shift must be synchronized. The problem of syn-

chronizing all nodes of the hypercube, or one of its subcubes, is called the global synchronization
problem. Solutions to the global synchronization problem are also useful for solving mutual
exclusion problems, logging asynchronous events, assisting in debugging, and generating unique

time stamps in distributed databases [5].

Using the forced message protocol for message passing during a shift operation implies that
some kind of synchronization is employed to ensure that buffers have been allocated prior to the

receipt of incoming messages. (The forced message protocol is described further in Section 2.)
One way to do this is to globally synchronize the nodes before a shift that uses the forced mes-
sage protocol. It is shown that two of the most commonly used synchronization algorithms,
gsync ( ) and sync0 (), often do not synchronize the nodes closely enough to guarantee con-

current bidirectional communication. A third algorithm, the recursive doubling synchronization
(RDS) algorithm presented here, is shown to synchronize nodes more precisely. This precision
ensures concurrency during message passing and reduces the cost of the shift operation by almost

a factor of two, compared to its usual cost in practice, for messages of a few kilobytes or more.
The cost of the RDS algorithm is in practice only slightly more than the costs of the other two

algorithms.

Section 2 provides a brief background on Intel's message passing protocols and their costs.
Section 3 describes Intel's gsync ( ) algorithm, PICL's sync0 ( ) algorithm, the RDS algo-
rithm, and the methods used to obtain the timing constants necessary for the RDS algorithm.

Section 4 compares the performance of these algorithms in the context of the shift operation.



2. Background

2.1 Message-passing protocols and communication costs

The available message passing protocols and their costs on the iPSC/860 are well docu-

mented. (For example, see [2, 13].) The material in this section summarizes those aspects of the

message passing system that are relevant to the work presented in the rest of the paper.

Three message passing protocols are available on the iPSC/860. A message of length less
than or equal to 100 bytes is sent in a single packet to the destination node. This is called the

short message protocol. Two protocols are provided for messages longer than 100 bytes. In the
long message protocol the sending node sends a PROBE message to the destination node. If the

receiving node has not already allocated a buffer for the incoming message, it does so. It then
sends a REQUEST message to the source node. The PROBE and REQUEST messages are sent using

the short message protocol. The source node then sends the message to the destination. The
forced message protocol is like the long message protocol but skips the PROBE/REQUEST steps.

This protocol should only be used when the receiving node has previously allocated a buffer to

receive the incoming message.

The cost of an operation is described with respect to an ideal global clock. It expresses the

amount of time that elapses from when the first node starts the operation to when the last node
completes the operation. If more than one node is involved in the operation, as is usually the
case, 8 denotes the maximum time difference between the times any pair of nodes begins the

operation. For example, 6 = 0 if the participating nodes all happen to start the operation at
exactly the same time.

The cost of a send operation between neighboring nodes using the long message protocol is
am+bt, where m is the message length in bytes, a is the cost of transmitting one byte, and bt is the
latency (the l is for long). (In general, there is also a cost for establishing the circuit that links the
sending and receiving nodes. That cost is proportional to the number of links in the circuit.

However, the global synchronization algorithms considered here and the shift operation make use

of only nearest neighbor communication, so circuit-buildings costs do not need to be included in
the cost model described here.) The cost of sending a null (length 0) message using the short

message protocol is a constant, denoted by bs. The cost of a send operation using the forced mes-
sage protocol is am+bs. Measurements of these constants for the iPSC/860 are given in Table I.

The last entry, s, in that table is the time it takes a sending node to return from its call to
csend ( ) after sending a null message. This constant is discussed further in Section 3.1.

a* 0.36 p.sec/byte

bl 136 Ixsec

bs 75 lxsec

s 44 lisec

Table I: iPSC/860 communication constants.

* Earlier published estimates of a are as much as 10% higher than the value givenhere, but this value agrees best with
recent measurements.



2.2 Ensuring concurrency during an exchange

According to the communication model described above, when two nodes exchange mes-

sages using the long message protocol they must be synchronized to within/5 < bs Ixseconds to
avoid link contention and ensure concurrency. Measurements have shown that slightly more pre-

cise synchronization is actually required (65 laseconds [4]) but to simplify the analysis that fol-
lows bs = 75 llseconds will be used as the bound. When it is critical to the analysis, the more pre-
cise 65 Ixsecond bound will be noted.

As shown in Figure 2-1, when 8 < bs the cost of the simple exchange is am+bt+5. (I'he
contribution of/5 to the cost is not shown explicitly but is easily inferred in Figure 2-1 and those
that follow. The costs illustrated in this series of figures are the minimums obtainable in each

case.) In practice, however, the nodes are not this closely synchronized. When bs <-5 <_am+bt/2
the simple exchange of long messages proceeds as shown in Figure 2-2. In this case link conten-
tion causes messages to be passed sequentially because each node can send at most one message
and receive at most one message at the same time. The cost in this case is 2am +(3/2)bt. Note

that this cost does not involve 8. Finally, when 5 > am +bt/2 the PROBE from the righthand node
in Figure 2-2 is not entirely concurrent with the long message from the lefthand node and the cost

becomes 2am+(3/2)bt+8', where 8' = 8 - (am+bt/2).

To ensure concurrent bidirectional communication during the simple exchange each node
should send a null (zero length) message to the other and wait for a reply before sending the long

message. This version of the simple exchange is illustrated in Figure 2-3 for the case of 8 = b,.
The cost depends upon the amount of overlap, if any, of the two null messages. In general, the

cost is am +bl+b,+8. It is easy to show that this approach to synchronizing the simple exchange
costs less than the nonsynchronized version when bs <-8 < am+(1/2)bl-b_. Since am+(1/2)bt-bs
= am, it is convenient to simplify this range to b, < 8 <-am. In practice it is reasonable to assume

that 8 falls within this range because bs is small and, for messages of a few kilobytes or more, am
is relatively large. It is therefore safe to say that in practice the cost of a simple exchange of mes-
sages can be reduced by almost half if the nodes are first synchronized by an exchange of null

messages.
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Table Ih Costs of message passing operations.

b_<_8<_am
5_>0

The forced message protocol assumes that the destination node has a buffer into which to

put the incoming message. This is accomplished by having the destination node allocate a buffer
by a call to 5.recv ( ) prior to the message transmission. One way to notify the sending nodes
that these buffers have been allocated is to exchange null messages, as shown in Figure 2-4. This

amounts to synchronizing the simple exchange, just as when the long message protocol was used.



Again,thecostdependsupontheamountof overlapof thetwonull messages.In thiscasethe
costisam + 2bs + 8, for all 8 > 0.

Table II contains a surnrnary of the costs given above. Also included in that table are cost
estimates of the shift operations described in the next section.

2.3 Ensuring concurrency during a shift

Event simulation, tridiagonal matrix solvers [7], computational fluid dynamics codes [11],

sequence comparison algorithms [8,9], and some bin sorting algorithms [14] all use a communi-
cation operation called a shift. In a shift, processors in a hypercube that are mapped to a one-

dimensional array or ring each send a message to their right (or left) neighbor. The cost analysis
of the shift operation is analogous to that of the simple exchange.

When the long message protocol is used and 8 < bs this operation has a cost of am+b1+8, as

shown in Figure 2-5. (In this, and the following figures, the latency bt is assigned to the PROBE
and REQUEST steps of the long message protocol and the remaining cost am is assigned to the

transmission of the long message itself. The actual costs of each step in the protocol have not
been individually measured.) When b, < 8 < am the cost increases to 2am+(3/2)bl, as shown in

Figure 2-6. Again, this increased cost is due to the fact that each node is limited to sending one
and receiving one message at a time. To ensure concurrency when using the long message proto-
col, the nodes in the array or ring should be globally synchronized prior to the shift.

The cost of a shift using the forced message protocol is am+b,+8, for all/5 > 0, as shown in
Figure 2-7. Using the forced protocol implies that some form of synchronization has been used

to ensure that buffers have been allocated prior to the receipt of the incoming messages. One way
to do this is to globally synchronize the nodes. Thus, global synchronization can be useful even
when shifting using the forced message protocol.

2.4 Message buffer management

In general, care must be taken in order to get the best performance from the communication
network. The cost of communication operations can be predicted with the greatest reliability
when the communication buffer system is in a known state. Unless those buffers are managed
carefully, random message traffic can occur on the network and result in poor performance. Also,

receiving unexpected messages can lead to imbalances in the number of message buffers in the
nodes which directly leads to an increase in system message traffic on the network.

The operating system of the nodes has a small set of buffers reserved to hold headers for
messages. The forward flow control management of these buffers allows several messages to be
sent from one node to another before a response is received. Once the buffer pool in a receiving
node is exhausted, that node will refuse to accept additional incoming messages until it has indi-
cated to the sender that it has one or more buffers available for the receipt of new messages. In

this situation the buffer management software in each node intervenes by spontaneously sending
a message to release available buffers [12]. Such message Iraffic is difficult to predict and can

adversely affect measurements of the message passing system and the performance of applica-
tions. Applications that continually balance the number of messages sent to and received from a

particular node avoid this problem since the headers of the application messages are also used to
transmit the necessary buffer information. In particular, the short message protocol and the
PROBE message of the long message protocol consume flow control buffers. The forced message

protocol bypasses this management system since it is assumed that the destination node has allo-
cated a buffer prior to receipt of the message. In actual applications, balanced message traffic
must be maintained in order to ensure the most effective use of the network.



When timing a communication operation, it is usually repeated many times and the cumula-
tive cost is averaged. In these situations there is usually no complementary (backward) flow of

messages. The program used to determine the constant s is one such example. Accurate meas-
urements of this constant could only be obtained by balancing the flow of messages. In the meas-

urements given in Sections 3 and 4, care was taken to balance the message traffic so that spon-
taneous flow control messages did not need to be sent by the node operating systems.

3. Synchronization Algorithms

Three algorithms for global synchronization are considered. The first, called gsync (), is

provided as a primitive operation in NX/2, the node operating system of the iPSC/860. The
second, called sync0 (), is provided with the Portable Instrumented Communication Library
[6]. The third is called the recursive doubling synchronization (RDS) algorithm.

3.1 gsync ( )

The gsync ( ) function is provided as a communication primitive to globally synchronize
the nodes of the iPSC/860* [10]. This algorithm is also called the butterfly barrier and was origi-

nally proposed for shared memory machines [1,3]. Let d denote the dimension of the hypercube.
In the gsync ( ) algorithm each node sends a null message to each of its d neighbors, starting
with the neighbor whose most significant bit differs from its own. It waits for a reply to each

message before sending the next.

The cost of gsync( ) depends on how closely synchronized the nodes are when each

makes its call, that is, the cost depends on/5. If/5 < bs, then the cost of gsync ( ) is dbs+6, as
shown in Figure 3-1. While that figure indicates that each simple exchange is done concurrently,
it is assumed that some nodes lag the others by up to/5 time units and so some of the exchanges

are only partially overlapped in time. The slower nodes and all of their neighbors thus finish as
much as 8 time units later than the remaining nodes. Let the maximum time difference, relative
to a global clock, between the times any pair of nodes completes their calls to a synchronization

function be called the precision of that function. In this case the precision of gsync ( ) is no
greater than/5.

In practice it is unlikely that all nodes are synchronized to within bs llseconds when they

reach their calls to a synchronization function. (If it happens that 8 < bs, then global synchroni-
zation is not required to achieve concurrency during message passing.) It is now shown that if
/5> b,, then the cost of gsync() can be considerably higher than db,+8 and its precision

depends on both/5 and d. Assume that node 7 is delayed by 8 = bs _tseconds, as shown in Figure
3-2. Because of this delay, node 7 does not immediately send its message to node 3. In the worst
case, shown in the figure, that message can be blocked during steps 2 and 3. (The dashed arrow

shows that receive port contention has blocked the message from node 7.) When the receive port
on node 3 is finally available, node 7 can then send its message to node 3 and to the remainder of
its neighbors. This amounts to a recursive doubling broadcast rooted at node 7, as shown in the

last three steps of Figure 3-2. Note that the choice of node 7 in this example was arbitrary.

Let s be the time that it takes the source node to complete a send. Since a source node
finishes sending before the destination node finishes receiving, s < b,. Measurements indicate

that s = 44 _tseconds (see Table I). Figure 3-3 is a timing diagram of Figure 3-2. That diagram
shows that node 7 will be out of sync with node 0 by 3(b,-s) laseconds when node 7 returns from

,I

The implementation of gsync ( ) is described here with permission of Intel.



its call to gsync ( ) and, in fact, no node is synchronized with node 7. In general, the precision

of gsync ( ) is d(bs-s) _econds in a hypercube of dimension d when 8 > bs. The total cost of

gsync ( ) in this case is 2dbs, about twice the cost when 8 < bs.

A complete analysis of the cost and precision of gsync ( ) is beyond the scope of this
paper. The examples given above allow us to conclude that when 8 < b, the cost of gsync ( )

is db,+8 and its precision is 8. Also, when all but one of the nodes is initially synchronized with
the others and when b_ </5 <dbs the cost is approximately 2dbs, and when 8 > db_ the cost is

dbs+8. In these two cases the precision of gsync ( ) is d(bs-s) because the final steps of the
algorithm constitute a recursive doubling broadcast rooted at the "slow" node.

3.2 syncO ()

The sync0() synchronization algorithm is provided with the Portable Instrumented
Communication Library [6]. If it happens that 8 < bs, sync0 ( ) operates as shown in Figure

3-4. In the first step each node whose high order bit is 1 sends a message to its neighbor whose
high order bit is 0. The subcube of d/2 nodes whose high order bits are 0 is then synchronized
using the same sequence of simple exchanges that are used in gsync ( ) (except the order in
which the sends are done is reversed). On the last step each node in that subcube sends a message

to its neighbor whose high order bit is 1. The cost of sync0 ( ) in this case is (d+l)b;+5 and its

precision is 8.

Figure 3-5 illustrates the operation of sync0 () when node 7 is delayed by 8 = b,

_tsecond s. In this case the first message that node 7 tries to send can be blocked at steps 2 and 3.

The timing diagram in Figure 3-6 shows that when the algorithm terminates, nodes 3 and 4 will
be out of sync by d(b,-s) lxseconds. The cost of sync0 ( ) in this case is (2d+l)b,. A com-
plete analysis of the cost and precision of sync0 ( ) is also beyond the scope of this paper.
Such an analysis is more complex than in the case of gsync ( ) because the sync0 ( ) algo-

rithm is different for nodes in the high and low halves of the cube. It remains that sync0 ( )
uses an algorithm essentially identical to gsync ( ) on a subcube of dimension d-l, so it can be

expected to have about the same cost and precision as gsync ().

3.3 The RDS algorithm

The third synchronization algorithm considered here is the recursive doubling synchroniza-

tion (RDS) algorithm. This global synchronization algorithm has three phases. The first phase is
a reverse of a recursive doubling broadcast, as shown in Figure 3-7. This serves to create a bar-

rier that brings all of the nodes into a known state. This is followed by a recursive doubling
broadcast rooted at node 0. The nodes do not complete this phase at the same time, but it is easy
to determine the relative time at which each node does complete this phase. Based on that deter-

mination, in the third phase each node does a busy walt until all messages have propagated to
their destinations. This waiting phase, with waiting times based on measurements of message
passing costs, ensures that all nodes are synchronized at the end of the third phase.

The timing diagram for the RDS algorithm is shown in Figure 3-8. Assuming node 0 is the
root, the last node to receive a message in phase 2 is node 2d-1. Each node i then waits for w_

Ixseconds after it has finished the phase 2 broadcast to become synchronized with node 2d-1. The

time required for the message broadcast from the root to propagate to each node i in the recursive
doubling spanning tree is used to determine wi. Let I i l I denote the number of 1 bits in the node
number of node i. The recursive doubling spanning tree is chosen so that I i 11 is the level of node
i in that tree. Each node must wait some integer multiple of (b,-s) time units in order to be syn-
chronized with node 2d-1. That multiple for node i is just d minus the level of node i in the tree,

or d - I i 11. Thus, wi = (d - I i 1l)(b,-s). (If only a subcube needs to be synchronized, then only
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those bits which differ in the subcube are counted in Iil 1.) Each node i will perform a busy wait

by executing an empty while loop.

The cost of the RDS algorithm is easy to determine and does not depend on the relation of 5

and bs. The cost of phase 1 is just the time it takes the "slowest" node's message to reach node 0,

namely, dbs+5. The cost of phase 2 is the cost of a recursive doubling broadcast, db,. The wait-

ing time of phase 3 does not contribute to the cost of the algorithm because the busy waiting
occurs only while other nodes are waiting to receive synchronization messages during phase 2.
Thus, the total cost of the RDS algorithm is 2db,+8. This is comparable to the costs of
gsync ( ) and sync0 ( ) except in the extreme case when/5 < b,. The precision of the RDS

algorithm is 0, for all 8 > 0.

To obtain this precision in practice requires accurate estimates for s and b_. Recall that the

parameter s is the time it takes the sending node to complete its send of a null message using the
short message protocol, and b, is the time that the destination node finishes receiving the null

message relative to when the sending node started. The latter is just the cost (latency) of the short
message protocol. The value of s is easily measured since it depends only on the performance of
a single node. The estimate used here is s = 44 liseconds. The value of bs was measured by tim-

ing the (synchronous) send/reply operation and dividing by 2. The estimate used here is bs = 75

laseconds. These estimates are each based on 10,000 trials obtained using the Intel dclock ( )
system primitive.

An empty while loop was timed in order to implement the busy walt in the third phase of
the RDS algorithm. Care was taken to ensure that compiler optimizations did not eliminate the

explicit execution of such loops. Figure 3-9 shows that interrupts periodically add about 50
laseconds to the cost of a fixed number of iterations. Since this variation is within the 65 _second
tolerance required for node synchronization mentioned earlier, and since disabling the interrupts
can have an adverse effect on other users, this variation was ignored. (On the other hand, analo-

gous work on the iPSC/2 necessitated disabling the interrupts because their magnitude was larger,
probably due to slower node processors, while the synchronization tolerance was the same 65
laseconds due to the similarity of interconnection hardware used on the iPSC/2 and iPSC/860.
See [4] for details about the implementation of the RDS algorithm on the iPSC/2.) The costs of
various numbers of iterations of an empty while loop are given in Figure 3-10. Ignoring the

outlying data points, a line fit to those data gives the cost of k iterations to be w; = 0.126k+2.0

p_seconds. It follows that a delay of wi liseconds can be obtained with an empty while loop of
k = (wi-2.0)/0.126 iterations.

3.4 The effect of system interrupts

It is now shown that when a call to gsync ( ) precedes a shift operation, synchronization

messages can sometimes contend for communication links with shifted messages because of the

imprecision of gsync( ) and the random occurrence of system interrupts. Even when the
forced message protocol is used in the shift, the actual cost of the shift can be twice the predicted
cost of am+b,, sync0 ( ) is also subject to this insecurity because it uses essentially the same

algorithm as gsync ( ) on a subcube of dimension d-1. The discussion that follows thus con-
siders only the behavior of gsync ().

Suppose that a shift is preceded by a call to gsync ( ) in a hypercube of 4 nodes and that
the shift is around a ring embedded by the usual binary reflected Gray code. Also assume that

node 0 is initially out of sync by 8 > b_ _econds so that it acts as the root in a recursive doubling
broadcast during the latter pan of the gsync ( ) algorithm, as described in Section 3.1. In the

absence of system interrupts, the broadcast and subsequent shift proceed as shown in Figure 3-
11(a). Note that the cost of shifting messages of a few kilobytes or more is much greater than the
cost of gsync ().
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Nowsupposethat a system interrupt occurs in node 2 just after it has received the first mes-

sage broadcast from node 0. This delays node 2 for approximately 50 _econds, an amount that
is slightly greater than s. Because of this delay, node 1 can begin its shift to node 3 before node 2
can send its synchronization message to node 3. When node 2 returns from its interrupt it must

wait for node 1 to complete its shift. Thus, the shifts from nodes 1 to 3 and from nodes 3 to 2
occur sequentially rather than concurrently. This situation is illustrated in Figure 3-1 l(b). In this
case the cost of the shift operation is about twice what it was when no interrupts occurred.

While such occurrences of interrupts during synchronization have not been observed

directly, there are two factors that contribute to the likelihood that interrupts will interfere with

gsync ( ) and sync0 (), thus increasing the cost of the shift operation. First, the number of
interrupts that occurs grows with the size of the hypercube simply because there are more nodes

liable to interruption. Second, in the absence of interrupts each pair of neighboring nodes in the
ring finishes the recursive doubling broadcast within approximately s v_seconds of each other.
This is a consequence of the structure of the broadcast tree and the Gray code embedding of the

ring. The timing relationship among nodes 1, 3, and 2 depicted in Figure 3-1 l(a) thus occurs at
many sites in larger hypercubes. One would therefore expect to see fewer concurrent shifts as the

hypercube grows. This is exactly what was observed in the performance measurements given in
Section 4.

Recall that when 8 > bs, the precision of gsync ( ) is d(bs-s) _tseconds. However, with

respect to the Gray code embedding, each pair of neighboring nodes in the ring is out of sync by
only b_-s _tseconds because they are on adjacent levels of the recursive doubling broadcast tree.
In the absence of system interrupts gsync ( ) would thus be expected to successfully ensure

concurrency during the shift operation. In the presence of interrupts gsync ( ) is less likely to
be successful, for the reasons described above. The low success rate of gsync() and

sync0 ( ) presented in Section 4 for the iPSC/860 is therefore attributed to the affect of system

interrupts.

Interrupts from the node operating system can also affect the precision of the RDS algo-
rithm, but not so much that they increase the cost of the shift operation. It can be deduced from

Figure 3-9 that each node services an interrupt about every 10 milliseconds. Interrupts that occur
in nodes during phase 1 of the RDS algorithm add only to the cost of synchronization and do not

affect the precision of the algorithm. Because interrupts occur with a definite period, each node
services the same number of interrupts (+1) as any other node during the last two phases of the

RDS algorithm, so no node is delayed more than 50 laseconds by interrupts with respect to any
other node. Since the tolerance for synchronization is 65 _econds, a pair of neighboring nodes
in the ring that are out of sync by 50 _tseconds should not affect the cost of the shift operation.

The busy waits during phase 3 prevent system interrupts from interfering with synchronization
messages and shift messages that can occur in gsync( ) and sync0(). Figure 3-12 is the

analog of Figure 3-11Co) for the RDS algorithm. The busy wait by node 1 prevents node 1 from
beginning to shift its message to node 3 even though node 2 has been temporarily delayed by an

interrupt.

4. Observed Performance

There is no global clock available to the nodes of the iPSC/860 so it is not possible to
directly measure how closely the nodes are synchronized. This section presents indirect evidence

of synchronization precision based on the observed costs of the shift operation. Measurements
were made of the time it takes to synchronize and then shift a message one hop around a ring of

nodes. The gsync (), syncO (), and the RDS algorithms were interchanged, and message

lengths, protocols and ring sizes were varied.
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4.1 Observedshifting costs

The data collected from repeatedly synchronizing and shifting various sizes of messages in

rings using the long and forced protocols and gsync (), syncO (), and the RDS algorithms
can be examined in several ways. Figures 4-1 through 4-3 show the observed and predicted times

for the gsync ( ) and RDS algorithms used before shifts using the long and forced message pro-
tocols for d=2, 5, and 7 for the iPSC/860. Only the times for the shift operation are plotted since

the synchronization cost depends on how closely synchronized the nodes are from one pass
through the loop to the next. The minimum predicted cost of a shift using the forced message

protocol, am+b,, is included in these graphs as a reference. Each observed time plotted in these
figures is the average of the longest time recorded in each trial. Not as much data could be
obtained in the case of sync0 (), but those graphs include what was available.

When the forced message protocol is used to shift messages after synchronization by the

RDS algorithm the observed performance agrees well with the predicted cost and is considerably
less than the cost of shifting after gsync ( ) or sync0 (). For sufficiently large messages the

RDS algorithm reduces the cost of the shift operation by several milliseconds compared to those

algorithms. This difference is attributed to the affect of system interrupts. The savings increase
with the size of the ring.

A similar relationship holds between the performance of these algorithms when the long

message protocol is used for shifting. In this case, however, none of the algorithms are able to

consistently reach the minimum cost, although the RDS algorithm always performs better than
the other two. The poor performance of all three algorithms when shifting using the long mes-

sage protocol is attributed to the forward flow control of message buffers imposed by the node
operating system. The occurrence of interrupts is the most likely reason why gsync ( ) and

sync0 ( ) perform less well than the RDS algorithm.

Figure 4-4 shows how the various protocols and synchronization algorithms perform for
various size hypercubes with the length of the shifted message held constant at 32K bytes. These
data also indicate that consistent performance is obtained only when shifting is done using the

RDS algorithm and the forced message protocol.

4.2 Frequency with which concurrency is obtained

A second way of examining how well the three algorithms synchronize the nodes is to con-
sider how frequently concurrent shifting is achieved. A success is defined to be a trial where
every node in the ring concurrently sends and receives the shifted messages. A failure occurs if
one or more of the nodes does not send and receive the messages concurrently in a single trial.

Successes and failures can be identified by their proximity to the predicted cost in each case.

Since these costs differ by almost a factor of 2, successes and failures are easy to distinguish. In
the data presented here, a failure was defined to be a shift operation whose cost was 1 millisecond

greater than the predicted minimum cost. Otherwise the trial was a success. This is a conserva-
tive definition of failure because it is less than the difference in predicted costs between con-
current and nonconcurrent shifts for the range of message lengths (4K to 64K bytes) considered

here. In particular, a concurrent shift of a message of 4K bytes using the forced protocol is
predicted to cost 0.36x4096+75 = 1.55 milliseconds, while a nonconcurrent shift costs twice that
amount. If there is no concurrency during the shift the measured cost will always exceed 2.55
milliseconds and will be regarded as a failure. While the difference between the costs of con-
current and nonconcurrent shifts becomes more pronounced as the message length grows, the 1
millisecond threshold was held constant.

The percentage of successes out of 50 trials is plotted in Figures 4-5 to 4-7. The small
number of trials was chosen because the long message protocol performs poorly for large
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numbers of trials. This is caused by the message buffer imbalance created by repeatedly perform-

ing the same operation. These data show that the RDS algorithm achieves a consistently high
success rate when messages are shifted using the forced message protocol. Note that the success
rates of gsync ( ) and sync0 ( ) fall off as the size of the hypercube increases, as anticipated
in Section 3.4. On the other hand, the frequency of successes is erratic and drops off significantly

when the long message protocol is used with the RDS algorithm. However, in all cases the suc-

cess rate of the RDS algorithm is greater than those of gsync ( ) and sync0 ().

4.3 Minimum message sizes

The performance results given above show that globally synchronizing the nodes using the
RDS algorithm before a shift using the long message protocol can reduce the cost of the shift

compared to the use of other synchronization algorithms. Since synchronization adds to the cost
of the shift, it must be determined when it will be economical to synchronize before the shift.

The minimum message size for which it should be advantageous to use the RDS algorithm before

a shift using the long message protocol can be determined by solving for the message length m in
the inequality below. The left hand side is the cost of sending a message using the long message
protocol with no synchronization. The right hand side is the cost of a concurrent shift using the

long message protocol plus the cost of the RDS algorithm. The term $ is included on the left
hand side because it determines when the "slowest" node will complete the shift. That term also

appears on the right hand side because, while it no longer contributes to the cost of the shift, it is

part of the cost of the RDS algorithm.

2am+3b/+8 > am+bt+2dbs+5,

(2dbs - bll2)
so m >

a

Using the constants a, bs, and bl from Table I, the minimum message sizes for which synchroni-
zation should be used are given in Table III. No empirical confirmation of these minimum mes-
sage lengths is offered here. That is left to observations of the actual applications in which shift-

hag is used.

d_-2 d--3 d=4 d=5 d--6 d--7 I

645 1062 1478 1895 2312 2728 [

Table III: Minimum message lengths (in bytes) for which

RDS synchronization is recommended when using the long message protocol.

When the forced message protocol is used for the shift, global synchronization can be used
to ensure that all necessary message buffers have been allocated. The analysis in Section 3.4
illustrated one case when gsync ( ) and sync0 ( ) do not reliably synchronize the nodes and
in turn cause the cost of the shift to be about twice the minimum. It follows that if global syn-

chronization is used before a shift it is always preferable to use the RDS algorithm, regardless of
the length of the messages shifted and the size of the hypercube. This reasoning is confirmed by

the performance data given earlier in this section for message lengths ranging from 4K to 64K

bytes and for hypercubes of all sizes.
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5. Summary

Three global synchronization algorithms for the Intel iPSC/860 were described. The costs
of these algorithms are comparable in practice, so the choice of algorithm can be based on the

precision with which these algorithms synchronize the nodes. This precision was measured
indirectly through observations of the cost of the shift operation. That operation has the property

that its observed cost tends to differ by a factor of two depending upon whether or not concurrent
bidirectional communication is achieved. Both the long and forced message protocols were used
to shift messages after the nodes were synchronized. Also described was how the random

occurrence of system interrupts can adversely effect the cost of shifting after a call to gsync ().

The RDS algorithm combined with the shift using the forced message protocol ensures con-
current shifts greater than 99% of the time for hypercubes of all sizes and for messages of at least

4K bytes. In a ring of only four nodes the success rate of gsync ( ) is similar to that of the RDS
algorithm when the forced message protocol is used. As the size of the hypercube grows it
becomes more likely that an interrupt will cause synchronization and shift messages to contend

during gsync(), but the RDS algorithm is not subject to this problem in practice. The data
confirm that gsync ( ) loses its effectiveness while the RDS algorithm continues to reliably
synchronize the nodes as the hypercube grows. For example, the frequency with which
gsync ( ) achieves concurrency ranges from about 90% for d=2 to less than 5% for d=7. Based

on the data available, sync0 ( ) performs at a level intermediate to gsync ( ) and the RDS

algorithm.

The RDS algorithm does not perform as consistently when messages are shifted using the
long message protocol. This inconsistency is attributed to the forward flow control protocol used

for message buffer management by the node operating system. However, the data show that the
RDS algorithm is still preferable to gsync ( ) and sync0 ( ) and the cost of the RDS algo-
rithm is fully amortized when the messages being shifted are several kilobytes long. The actual

crossover point depends on the size of the hypercube. That point varies from about 650 bytes for

d--2, to 2730 bytes for d=7.
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